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Abstract
The collective excitation modes of individual single-walled carbon nanotubes
are studied theoretically in the nearest-neighbour tight-binding approximation.
Umklapp terms are taken into account and local-field effects are studied.
Plasmon mode dispersion relations for carbon nanotubes with radius R ∼
7 Å are obtained. We report a strong dependence of the plasmon dispersion
on the chirality of the carbon nanotubes. In particular, armchair and zigzag
tubes have dispersive plasmons, but some of the chiral tubes have essentially
dispersionless plasmons. Our results offer an alternative explanation to the
origin of the experimentally observed low-energy dispersionless modes found
in momentum-dependent EELS experiments. Important differences between a
tight-binding model and free electron gas model are discussed and it is shown
that some important qualitative features cannot be captured by a free electron
gas model. An acoustic plasmon mode is found in all metallic carbon nanotubes,
giving support to the experimental findings in Raman scattering.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For over a decade, since the pioneering article by Iijima [1], carbon nanotubes have been at the
centre of attention of the scientific community due to their rich electronic and optical properties
and to their potential applications. Intensive research efforts have allowed us to have a good
understanding of some of the basic properties of carbon nanotubes [2, 3]. The electronic single-
particle band structures are well described by the tight-binding model. Collective vibrational
modes have been studied extensively by Raman scattering and the different modes and their
line shapes have been identified and well explained. In contrast, our present understanding of
collective electronic excitation modes or plasmons in carbon nanotubes is still very limited.

The majority of experimental investigations of plasmons in carbon nanotubes are electron
energy loss spectroscopy (EELS) studies [4–15]. EELS experiments have been carried out in
samples of multi-wall nanotubes (MWNTs), single-wall nanotubes (SWNTs) and their bundles.
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Reed and Sarikaya [10] offered a detailed analysis of the obtained experimental outcomes,
pointing out that some of the results and interpretations have been contradictory.

Raman scattering experiments studying phonons in carbon nanotubes have also provided
insights on plasmons indirectly [16, 17]. In addition, reflectivity measurements by Bommeli
et al [18] have suggested a plasmon energy of 0.14 eV.

A large number of theoretical investigations of plasmons in carbon nanotubes are based
on free electron gas models, by considering an electron gas confined to a cylindrical wall
of either zero thickness or nonzero thickness [19–30]. MWNTs were modelled by several
authors [19, 21, 22] as coaxial tubules of zero wall thickness. Jiang [24] used a two-fluid
hydrodynamic description to model both π and σ electrons. Vasvari [25], and Taverna et al
[29] considered cylindrical walls of finite thickness. Que [30] studied nanotube bundles whose
cross section is a periodic 2D lattice.

Although the electron gas model is a good starting point for studying the qualitative
features of plasmons in carbon nanotubes, its usefulness is limited. It is well known that the
chirality of carbon nanotubes plays an important role in the electronic properties, and the band
structures are dependent on the chiral vector, leading to metallic or semiconducting tubes. The
plasmon excitations are expected to be dependent on the band structure. For example, one can
expect to find acoustic plasmons in metallic nanotubes, but only optical plasmons can exist
in semiconducting nanotubes. The electron gas model ignores such important fine details,
and therefore, for quantitative detailed comparison with experiments, it is desirable to use
better models that take into account the band structure of carbon nanotubes properly. Another
drawback of the electron gas model is that it cannot assess the local-field effects [31, 32]
associated with the periodic lattice structure.

Since the tight-binding model describes most of the carbon nanotube band structures very
well, it is an excellent model beyond the electron gas description. So far, only Lin and co-
workers [33–36] have used the tight-binding model for π electrons to obtain the loss functions
for multi-wall carbon nanotubes, individual SWNTs and their bundles and graphite layers.
Local-field effects were not included or assessed.

Very recently Marinopoulos et al [37, 38] performed ab initio density functional theory
calculations of the optical and EELS spectra for single-walled carbon nanotube bundles of
very small radius. Local-field effects were considered. They found that at the random
phase approximation (RPA) level very good absorption spectra were obtained, suggesting that
exchange–correlation effects are damped. The authors did not present any plasmon dispersion
curves.

Inspired by the experimental possibilities to probe individual carbon nanotubes
[10, 13, 14, 17, 39, 40], we present in this paper a detailed theoretical study of plasmons in
individual SWNTs; the paper is intended to give all the details behind our previously obtained
results [41]. We believe that studying individual carbon nanotubes is key to understand their
electronic excitations, because experiments on bulk samples or bundles measure an average
signal from many tubes of different chiralities and diameters, therefore many of the fine details
are smeared out. There is already experimental evidence that the excitation energies in a bundle
are different from those in a single tube, and different single tubes show individuality [10].
Our approach is similar to that used by Lin et al, using a tight-binding model for π electrons
and the random phase approximation (RPA) to calculate the dielectric matrix; however, unlike
Lin et al, we include the Umklapp terms in order to assess local-field effects [31, 32]. The
same theoretical framework has been applied successfully to many systems including quantum
wires [42]. We find that when all the Umklapp terms are dropped we obtain the same result as
in the later papers of Lin et al [34, 35], hence confirming their results. We perform a detailed
analysis of our results, and some of our findings have never appeared in the literature before. In
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particular, we find that the plasmon dispersions can depend strongly on the chirality of carbon
nanotubes. For nanotubes of similar radius, the armchair tubes and zigzag tubes both have
significantly dispersive plasmons, but chiral (n,m) tubes whose greatest common denominator
gcd(2n +m, 2m +n) is equal to unity have practically dispersionless plasmons. This and other
predictions should fuel experimental efforts in our quest for the understanding of collective
electronic excitations in carbon nanotubes.

The derivation of the dielectric matrix is sketched in section 2. Section 3 is devoted to
introducing the tight-binding wavefunction relevant to the single-particle electronic states in the
π and π∗ bands. The obtained results are discussed in section 4 and conclusions are presented
at the end. Three appendices are included, giving all the details of our calculations.

2. Dielectric matrix in SWNT

Consider an isolated SWNT of radius R and length �. Assume a coordinate system with the z-
axis being the nanotube’s axis. The starting point for our derivation is the Poisson’s equation for
the induced potential Vin(�r) created by the induced electron density nin(�r) due to the response
of the system to the influence of an external potential.

The single-wall nanotube is a quasi-one-dimensional periodic system with a cylindrical
symmetry and the electronic states are supposed to be confined in a small region near to its
surface, then it is natural to consider that the system electronic excitations carry a well defined
linear momentum q along the nanotube axis, and angular momentum L around it. Performing
a Fourier transform along the nanotube axis and in the angular variable around it we obtain

Vin(ρ, L, q) = 4e2

�ε0

∑

a,a′

∑

q ′,L ′
〈a|V (ρ ′, L ′, q ′)e−i(q ′z′+L ′φ ′)|a′〉

× 〈a′|F(ρ ′, ρ, q, L)ei(|q|z′+Lφ ′)|a〉 f0(Ea′)− f0(Ea)

Ea′ − Ea + ω
, (1)

where F(ρ ′, ρ, q, L) = IL (|q|ρ<)KL(|q|ρ>) and a, a′ label the electron states described by
the wavefunctions ψa(�r), ψa′(�r) with energies Ea , Ea′ . The induced electron density is given
within the self-consistent field approximation [43, 31, 32], and the appropriate expansion of the
Coulomb potential in cylindrical coordinates as given in appendix A was used.

The induced potential in the surface of the nanotube can be fairly approximated by

Vin(R, L, q) = 4

�
VR(q, L)

∑

a,a′

∑

q ′,L ′
V (R, L ′, q ′)〈a|e−i(q ′z′+L ′φ ′)|a′〉

× 〈a′|ei(|q|z′+Lφ ′)|a〉 f0(Ea′)− f0(Ea)

Ea′ − Ea + ω
, (2)

where the localized nature of the electronic states has been used and VR(q, L) =
e2

ε0
F(R, R, q, L).

Introducing the response function

K (q, L; q ′, L ′;ω) = 4

�

∑

a,a′
〈a|e−i(q ′z′+L ′φ ′)|a′〉〈a′|ei(|q|z′+Lφ ′)|a〉 f0(Ea′)− f0(Ea)

Ea′ − Ea + ω
, (3)

then the dielectric matrix on the surface of the nanotube is given by the expression

εR(q, L; q ′, L ′;ω) = δq,L;q ′,L ′ − VR(q, L)K (q, L; q ′, L ′;ω). (4)
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3. Single-particle electron states in an SWNT

The derivation in the previous section is the most general one. In this section we describe the
model we will use for the single-particle electronic states associated with the π bands of an
SWNT and apply it to obtain the corresponding expressions for the dielectric matrix and the
macroscopic dielectric function.

As is well known, a single-wall carbon nanotube can be described using the so-called zone
folding method as a graphene sheet rolled into a cylindrical shape. Let �Ch = n�a1 + m�a2

be the chiral vector, where n,m are integers and �a1, �a2 are the graphene lattice vectors. Let
�T = t1�a1 + t2�a2 be the lattice vector of the 1D nanotube unit cell, where t1 = (2m + n)/dR ,
t2 = −(2n + m)/dR, and dR is the greatest common divisor dR = gcd(2n + m, 2m + n) [3].
Now, consider a strip along the �T direction of length � = N | �T | and width w = | �Ch | = 2πR.
The strip can be described as a 1D Bravais lattice along the �T direction with lattice period equal
to T = | �T | and unit cell determined by the vectors �Ch and �T . Note that if the strip is repeated
periodically with the period given by the �Ch vector, we reconstruct the graphene plane. The
positions of the carbon atoms in the unit cell are given by the vector �τγ = (γ − 1) �R − rγ �T ,
where the symmetry vector �R is defined by the relation �R = p1�a1 + p2�a2, p1, p2 are the
smallest integers that are solutions of the equation t1 p2 − t2 p1 = 1 with gcd(p1, p2) = 1
and rγ is an integer number which makes the necessary translations to restore the vectors �τγ
inside the nanotube’s unit cell [3]. The number of graphene unit cells within the strip unit cell is
N0 = 2(m2+n2+nm)/dR [3]. A useful property of the symmetry vector �R is N0 �R = �Ch+M �T ,
where M = mp1 − np2. The strip reciprocal lattice vectors �K1, �K2 can be obtained from �Ch

and �T in the usual way, with �K2 parallel to the tube axis.
We use a nearest-neighbour tight-binding approximation to describe the single-particle

electronic states of the system. The electron’s wavefunctions are given by the expression

ψa(�r) = ψh
�k (�r) = 1√

2
[�A

�k (�r)+ λh
�k�

B
�k (�r)], (5)

where �A,B
�k (�r) are the tight-binding wavefunctions corresponding to atoms A and B in the

graphene layer unit cell; their expression is

�α
�k (�r) = 1√

N N ′

N∑

β=1

N ′∑

β ′=1

ei�k·( �Rαβ+�Sβ′ ) 1√
N0

N0∑

γ=1

ei�k·�τγ φ2 pz (�r − �Rαβ − �Sβ ′ − �τγ ), (6)

where �Rαβ = (β − 1) �T + δα,B ��AB and �Sβ ′ = (β ′ − 1) �Ch , the functions φ2 pz(�r) are the 2pz

atomic orbitals of the π electrons in the carbon atoms and the ��AB vector gives the shifting
from the lattice of A-type carbon atoms to the lattice of B-type atoms.

The Schrödinger equation is solved using the Slater–Koster [44] procedure and we obtain
the eigenvalues

Ea = Eh
�k = (−1)hγ0| f (�k)|, (7)

with the coefficients λh
�k given by

λh
�k = (−1)h+1 f ∗(�k)

| f (�k)| (8)

and the function f (�k) comes from the structure of the underlying graphene lattice and is given
by

f (�k) = ei�k·( 1
3 �a1− 2

3 �a2) + ei�k·( 1
3 �a1+ 1

3 �a2) + ei�k·(− 2
3 �a1+ 1

3 �a2). (9)
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In the previous expressions, h = 0 for electrons in the π band and h = 1 for electrons in the
π∗ band; the overlap integral is taken as γ0 = −3.03 eV [45]. As a consequence of applying
periodic boundary conditions in the direction of the chiral vector, the wavevectors �k have the
following form:

�k = µ �K1 + k
�K2

| �K2|
=

(µ
R
, k

)
, (10)

where µ is an integer number from µ = 0 to N0 −1, k belongs to the first Brillouin zone (1BZ)
given by the interval [−π/T, π/T ] and the sum over β ′ can be eliminated from (6).

The edge of the 1BZ π/T for all nanotubes is equal to
√

3dR/6R. Note that carbon
nanotubes with approximately the same radius R but different chiralities have different
Brillouin zone sizes; in particular, all armchair carbon nanotubes have π/T = π/a, with
a being the lattice constant of the graphene sheet, and all zigzag carbon nanotubes have
π/T = π/(

√
3a). Taking a = 2.49 Å, we have π/T = 1.26 Å

−1
for armchair

nanotubes, and π/T = 0.73 Å
−1

for zigzag nanotubes. Chiral nanotubes have π/T =
πdR/(a

√
3(m2 + n2 + mn) = 0.727gcd(2m + n, 2n + m)/

√
m2 + n2 + mn Å

−1
. For those

chiral tubes with dR = 1, the Brillouin zone can be extremely small. As we will see later, this
fact has important consequences for the dispersions of plasmon modes.

In the previous section it was shown how the dielectric matrix on the surface of the
nanotube depends on the transfer momenta along the axis of the nanotube (q, q ′) and on the
transfer angular momenta around it (L, L ′). Using these magnitudes, and assuming that the
geometry of the SWNT is locally flat, we can define a transfer momentum �q on the graphene
strip as

�q = L �K1 + q
�K2

| �K2|
=

(
L

R
, q

)
, (11)

and an analogous definition for �q ′. The periodic nature of the nanotube allows us to consider
any transfer momentum �q as �q = �q0 + �G, where �q0 = ( L

R , q0) with q0 a wavevector in the

1BZ of the nanotube and �G = g �K2 (g integer) is a vector in its reciprocal lattice. According
to Bloch’s theorem, the single-particle electronic states in a solid can be written in the form
ψν�k(�r) = 1√

�
ei�k·�r uν�k(�r), where ν stands for all the quantum numbers other than �k labelling the

single-particle electronic states in the system, and � is the volume of the system. Using the
property that the functions uν�k oscillate very rapidly within the unit cell, it is easy to show that

〈ν ′ �k ′|ei�q·�r |ν�k〉 = δ�k′ ,�k+�q0
〈ν ′ �k + �q0|ei(�q0+ �G)·�r |ν�k〉.

Using the single-particle electronic states in the nanotube, described by the wavefunctions
ψh

�k (�r), and with the help of the expressions above, we are able to compute the matrix element
between the tight-binding functions of our model entering the definition of the response
function K . The details are given in appendix B and the results are

〈h′ �k ′|ei�q·�r |h�k〉 = δ�k′ ,�k+�q0
δgM,uN0

1
2

(
1 + ei �G·��ABλh′∗

�k+�q0
λh

�k
)

A(�q0 + �G),
where the function A(�q) is given in appendix C. The response function is expressed as

K (q, L; q ′, L ′;ω) = δq0,q ′
0
δL ,L ′χg,g′ (q0, L, ω)

where

χg,g′ (q0, L, ω) = δgM,uN0δg′ M,u′ N0 A(�q0 + g �K2)A
∗(�q0 + g′ �K2)� �G, �G ′(q0, L, ω), (12)
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and

� �G, �G ′(q0, L, ω) = 1

�

∑

h,h′

∑

�k

f0(Eh′
�k+�q0

)− f0(Eh
�k )

Eh′
�k+�q0

− Eh
�k + ω

(
1 + ei �G·��ABλh′∗

�k+�q0
λh

�k
)

×
(

1 + e−i �G ′·��ABλh′
�k+�q0

λh∗
�k

)
. (13)

The expression of the response function leads us to a dielectric matrix which depends on a
well defined transfer momentum q0 and the angular momentum L

εg,g′ (q0, L, ω) = δg,g′ − VR(q0 + g| �K2|, L)χg,g′ (q0, L, ω), (14)

and the macroscopic longitudinal dielectric function is obtained from it by means of the
relation [31, 32]

ε(q0 + g| �K2|, L, ω) = 1[
ε−1(q0, L, ω)

]
g,g

. (15)

4. Results and discussion

The momentum-dependent EELS experiment carried out on bundles of SWNTs measures
the loss function defined as the imaginary part of the inverse of the macroscopic dielectric
function [7, 8, 11, 15, 12]. In the case of isolated nanotubes the experimental difficulties in
achieving the resolution in momentum are enormous, thus available EELS spectra in this case
have been measured using spatial resolution instead [13, 14, 29]. Macroscopic theoretical
simulations, based on hydrodynamic and continuum dielectric models, for interpreting the
results of this type of experiments have been presented and tested against the experimental
results. In the case of momentum-dependent EELS, Marianopoulos et al [37, 38] argued that
the spectrum of the nearly isolated nanotube case can be obtained from the bundle case in the
limit of large lattice constant in the plane perpendicular to the nanotube axis and q → 0. Lin
et al have used the loss function obtained from the macroscopic dielectric function to study
collective electronic excitations in isolated SWNTs and their bundles [33–36]. A closer study
of this loss function will show up new aspects of the physics of the collective excitations in
carbon nanotubes. Before proceeding to its calculation we note that if we do not take into
account the Umklapp terms (g, g′ 	= 0) then the expression given in (15), for the macroscopic
dielectric function, exactly reproduces the result of Lin et al [34] for isolated SWNTs where no
local-field effects were considered.

To analyse the local-field effects (LFEs) it is necessary to consider the Umklapp terms in
the dielectric matrix, which, in principle, is of infinite dimension. The LFEs are determined
by the nondiagonal elements in the dielectric matrix; all these elements contain the factor
A(�q0 + g �K2)A∗(�q0 + g′ �K2), which has a finite value at (g, g′) = (0, 0) and goes to zero
very rapidly as a function of g and g′, as shown in figure 1, where it is plotted for the (10, 10)
armchair nanotube with angular momentum L = 0 and transfer momentum along the nanotube
axis q0 = 0.02 Å

−1
. There are no significant variations in this result for different values of L

and q0 as long as the radius of the considered nanotube is similar to the (10, 10)’s.
We have performed calculations using matrices with different dimensions to evaluate the

effect of the nondiagonal elements of the dielectric matrix. Our results show that the effects
of the local fields on the calculated loss functions are negligible at least for nanotubes with
large radii (R ∼ 7 Å), for which the zone folding method and the tight-binding model are good
approximations. This supports the previous result of Benedict et al [46] that the component
α0zz of the static polarizability is not affected by the effects of the local fields. They obtained
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Figure 1. Factor A(�q0 + g �K2)A∗(�q0 + g′ �K2) as a function of scaled g and g′ for the (10, 10) tube

with angular momentum L = 0 and q0 = 0.02 Å
−1

.

their result using a classical approach in the long-wavelength limit (q → 0). Our result can
be seen as a generalization of their result to any value of the transfer momentum. Recent
calculations [37, 38, 47] for the absorption spectra using different techniques (time-dependent
density functional theory and Green’s function approach) also support our findings in the long-
wavelength regime.

Only for nanotubes with small values of n and m, like the (3, 3), (5, 0) and (4, 2) cases,
do the off-diagonal terms of the dielectric matrix give a sizeable contribution, suggesting there
could be non-negligible local-field effects; however, such tubes have a small radius (R ∼ 2 Å)
and the tight-binding model itself breaks down for these cases [2]. Marinopoulos et al [37, 38],
have studied the local-field effects in the optical absorption spectra and EELS of bundles of
these nanotubes, and they found that the significance of local-field effects depends on the
direction of electric field polarization or momentum loss. When that direction is parallel
(perpendicular) to the tube axis, the local-field effects are negligible (important).

In our calculation we took into account only the single-particle states for the π -electrons.
The calculations were done for a variety of nanotubes including metallic and semiconducting
tubes with similar radii R ∼ 7 Å. Figure 2 shows the results for a typical loss function
calculation for nanotubes (10, 10), (13, 7), (16, 3), (17, 0) and (18, 0) with radius R equal
to 6.88, 6.98, 7.02, 6.75 and 7.14 Å; transfer momentum q0 = 0.04 Å

−1
and angular momenta

L = 0, 1, 2, 3. The broadening used in these calculations was � = 0.2 eV, which is the
value used in all our calculations from now on unless otherwise stated. Common features are
that, for L = 0, there is a well defined peak at low energy with appreciable amplitude, which
is identified as an acoustic plasmon mode for metallic nanotubes (see discussion below) and,
for higher angular momentum, the first peak in the spectra is shifted to higher energies. For
example, there is no distinguishable peak below 2 eV for excitations with angular momentum
greater than two. This means that any collective mode with high angular momentum will be
interpreted as an optical plasmon. The peaks with larger amplitude are shifted to energies in
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and different angular
momenta for tubes with different chiralities but similar radius, about 7 Å.

the range 6–10 eV. The calculations were done for excitation energy up to 20 eV and we found
that the spectra are featureless for ω larger than 12 eV for any transfer momentum in the 1BZ.

The fact that the loss functions are featureless above 12 eV is at first puzzling, but a
detailed analysis of the expression for� �G, �G ′(q0, L, ω), given in (13), permits us to understand
the numerical results. Figure 3 shows the band structure of the (10, 10) carbon nanotube. The
Fermi level is at 0 eV. The subbands are pairwise mirror images of each other with respect to the
Fermi level, with the outermost pair of subbands corresponding to quantum number µ = 0, the
innermost pair corresponding to quantum number µ = 10, and other pairs in sequential order.
An excitation from the lowest occupied subband to the highest empty subband could have an
energy of about 18 eV. The corresponding allowed intersubband excitation would have at least
this much energy, plus a depolarization shift. If we consider the energetics alone, we expect the
loss functions to have features around such energies, but surprisingly the numerical results do
not show such features. To understand this result we will consider the �G = �G ′ = 0 element;
we note that in equation (13) there is not only the usual energy factor, but also an amplitude
factor |1 + λh′∗

�k+�q0
λh

�k |2. For µ = 0, we can show analytically that this amplitude factor is exactly

equal to zero (because f (�k) is real in this case and λh
�k = ±1). The presence of the amplitude

factor eliminates the contribution of the µ = 0 subbands, and makes the contributions from
other small µ subbands negligibly small, making the loss function featureless above 12 eV.

In figure 4 we show the different behaviours of the loss function of tubes with different
chiralities as we vary the magnitude of the transfer momentum along the tube. The two upper
panels in figure 4 show the loss functions for the metallic armchair (10, 10) tube with angular
momenta L = 0, 1. For L = 0, at q0 = 0.02 Å

−1
there is a sharp peak at an energy below 1 eV;

for higher values of q0 the major peaks are shifted to excitation energies in the range 4–8 eV
and the amplitude of the loss function clearly decreases as the transfer momentum goes to the
edge of the Brillouin zone (q0 = 1.26 Å

−1
), this trend on the energy of the collective excitation
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Figure 3. Band structure of the armchair (10, 10) carbon nanotube within the tight-binding model.
Subbands above and below the Fermi level EF = 0 eV are pairwise mirror images of each other,
each pair being associated with a different quantum number µ (see equation (10)). The highest
subband corresponds to µ = 0; µ increases sequentially for the next lower subbands, and the
lowest subband above the Fermi level corresponds to µ = 10.

mode as a function of the transfer momentum is similar to the one observed by Taverna et al
[48] in the context of the spatially resolved EELS experiment. For L = 1 there are no peaks at
energy values below 1 eV and the behaviour of the amplitude of the loss function is similar to
the L = 0 case. The next panels show the cases of the metallic (13, 7) and the semiconducting
(16, 3) chiral nanotubes. The latter is one of the nanotubes with the smallest Brillouin zone;
the edge is at q0 = 0.041 Å

−1
. The amplitude of the loss function for these chiral nanotubes is

one order of magnitude smaller when compared with those for armchair and zigzag tubes. For
L = 0 the loss functions present a sharp peak at energies in the interval 0–0.5 eV for the metallic
tube and at 0.5–1 eV for the semiconducting one. In the first case the amplitude of the peak
increases when the transfer momentum q0 increases, reaches a maximum and then decreases as
q0 goes to the edge of the Brillouin zone; in contrast for the second case the amplitude of the
low-energy peak always increases as the transfer momentum increases. The loss function of the
metallic tube has two very distinctive peaks at energies in the interval 2–4 eV whose amplitude
increases as the transfer momentum increases. In the semiconducting case there is a shoulder
at energies between 1 and 2 eV and a small peak in the energy range 2–3 eV. For L = 1 in both
cases there is only one distinctive isolated peak with energy close to 6 eV. The two lower panels
of figure 4 show the cases of the semiconducting (17, 0) and the metallic (18, 0) zigzag tubes,
and we see that when the transfer momentum increases the peaks also shift to higher energy,
but the peak amplitudes keep growing as q0 goes to the edge of the Brillouin zone, reaching
their largest amplitude for q0 = 0.73 Å

−1
and excitation energy ω ∼ 10 eV. This behaviour for

zigzag tubes is general and is the same whether they are metallic or semiconducting (see for
example figure 2(b) of the paper by Lin et al [34] for a semiconducting nanotube (23, 0) with
radius R = 9 Å). This behaviour could be used in a momentum-dependent EELS experiment
for the identification of zigzag tubes. For L = 1 the behaviour of the loss function is very
similar to the L = 0 case, with the remarkable exception that there is no low-energy peak in
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Figure 4. Loss function for armchair (10, 10), chiral (13, 7), (16, 3) and zigzag (17, 0), (18, 0)
nanotubes with angular momenta L = 0, 1 and different transfer momentum q0 within the first
Brillouin zone. Note that the amplitudes of the loss functions have been amplified for the two chiral
tubes.

any case. For small q0, the loss functions for nanotubes of different chiralities but similar radii
and electronic properties (whether they are semiconducting or metallic) are very similar.

According to the general EELS theory [49], valid for homogeneous and crystalline
systems, the peaks in the loss function should be interpreted as collective excitation modes.
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Figure 5. Plasmon modes for the semiconducting nanotube (16, 3) with L = 0 and different transfer
momenta within the Brillouin zone. The continuous (dashed) line shows the real (imaginary) part of
the macroscopic dielectric function; the dotted line is the loss function. The value of � = 0.01 eV
was used for these calculations.

For a transmission EELS experiment [50] the peaks are located at the energy ω where the
real part of the macroscopic dielectric function is zero and its imaginary part is small. The
imaginary part of the dielectric function provides a measure of the probability of interband
transitions and its magnitude is related to the damping of the collective excitation modes: the
larger the magnitude of the imaginary part of the dielectric function the larger the width of the
peaks in the loss function. Figure 5 shows the real and imaginary parts of the macroscopic
dielectric function and the calculated loss function for L = 0 excitations and different values
of the transfer momentum q0 within the 1BZ for the semiconducting (16, 3) nanotube and for
excitation energies up to 3 eV, the energy region where the nondispersive peaks are observed
in the experiment. All the general features regarding the theory of collective excitations are
clearly shown in this figure. At small transfer momentum (q0 = 0.008 Å

−1
) it is not possible

to distinguish between the curve for the imaginary part of the dielectric function and the loss
function, these showing a very weak and wide peak at energy close to 0.62 eV, the expected
position for the first absorption peak for semiconducting nanotubes within the tight-binding
model (e.g. E S

11 = a0γ0/R) [12], and the real part of the dielectric function has no zero. As
the transfer momentum is increased towards the edge of the Brillouin zone, the real part of the
dielectric function starts developing a zero in the region where its imaginary part is small and
a clear difference, given by a nonzero depolarization shift, is seen between the position for the
peaks of the loss function (plasmon mode) and the position of the peaks for the imaginary part
of ε(q0, L, ω). Another plasmonic peak is observed at energies above 1.3 eV with an amplitude
smaller than the one observed at lower energy but with a wider width.

The plasmon mode dispersion relations were obtained by scanning the loss functions as a
function of energy to find peak positions for different q0 values, and the differences between
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Figure 6. Dispersion relations for the plasmon modes for nanotubes with different chiralities for
angular momentum L = 0. The circles represent our theoretical results for isolated SWNTs, and
the diamonds are experimental data from Pichler et al [7] for a carbon nanotube bundle.

carbon nanotubes of different chirality became evident. In figures 6 and 7 we show the plasmon
dispersion relations for carbon nanotubes of different chiralities but similar radius R ∼ 7 Å,
with q0 varying from zero to the edge of their first Brillouin zone π/T and angular momenta
L = 0, 1. Since we are only interested in the low-energy excitation modes there is no need to
analyse excitations with higher angular momentum, as shown before. It is very obvious that
the (10, 10) armchair nanotube and the (17, 0) and (18, 0) zigzag nanotubes have plasmons
with considerable dispersion; in contrast, the chiral nanotubes (13, 7) and (16, 3) have little
dispersion. In general, all achiral tubes have plasmons with considerable dispersion. Plasmons
in chiral nanotubes have much less dispersion, and are essentially dispersionless in those chiral
tubes for which the greatest common divisor gcd(2n + m, 2m + n) = 1. The different sizes
of the first Brillouin zone play an important role here. Some of the branches terminate before
reaching the Brillouin zone boundary. That is because either in these modes the amplitude of
the loss function decreases as q0 increases or as q0 increases the peak defining the mode merge
with another peak at higher energy, and eventually no well defined peak can be detected. The
lowest branch for the (10, 10) tube in figure 6 behaves like this. The (10, 10) tube is metallic,
and its lowest branch is an acoustic plasmon mode for L = 0. The (13, 7) and the (18, 0) tubes
are also metallic and have an acoustic branch. The existence of the acoustic mode is supported
by experiments. The Raman scattering experiments of Brown et al [16] and Jiang et al [17]
suggest that in metallic carbon nanotubes there is a π band conduction electron plasmon with
energy less than 0.19 eV. The reflectivity data of Bommeli et al [18] suggest a plasmon energy
of 0.14 eV. Such low-energy plasmons can be explained by the acoustic plasmon mode, which
arises from the subbands crossing the Fermi level. Using a free electron gas model, Kempa [28]
has argued that the optical phonon–acoustic plasmon coupling is responsible for the Breit–
Wigner–Fano line shape feature just below the tangential G-band peak in the Raman spectra of
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Figure 7. Similar to figure 6 but for excitations with angular momentum L = 1.

metallic SWNTs. All the obtained plasmon modes for the semiconducting nanotubes (16, 3)
and (17, 0) are identified as optical plasmons; in this case, no subband crosses the Fermi level.

Our results offer some insights to understand the controversial origin of the low-energy
modes observed in the momentum-dependent EELS experiment performed by Pichler et al
[7, 8]. The two principal findings in the experiment were (i) a dispersive mode, interpreted as
a π plasmon, with energy varying in the range 5–8 eV as a function of the transfer momentum
(this mode is shown as black diamonds in figure 6) and (ii) several nondispersive modes
at lower energies: 0.85, 1.45, 2.0, and 2.55 eV. Without any theoretical guidance at that
time, the authors interpreted the low-energy, nondispersive modes as interband (intersubband)
excitations between localized states polarized perpendicular to the nanotube axis [7]. This
first interpretation was refined later in the light of new results coming from optical absorption
measurements, and in a recent paper by Liu et al [12] it was suggested that the observed
nondispersive modes are due to collective excitations of the optically allowed transitions.
Although this interpretation seems to be more adequate, still no explanation was given about
the nondispersive character of the observed modes.

An attempt to clarify the origin of the nondispersive modes was made by Bose [26] three
years after the initial experiment, based on a calculation of a free electron gas model. The
author pointed out that these low-energy modes could be optical plasmons corresponding to
nonzero angular momentum L. However, the theoretical results suggested that these modes
are not completely dispersionless. Although in his paper Bose did not present the calculated
dispersions of the L 	= 0 modes, such dispersions were presented in an earlier paper with
his collaborator Longe [21], with figure 1 of that paper showing the L = 0 mode with the
most dispersion, and other modes with less and less dispersion as L increases. The amount of
dispersion is still significant for the L 	= 0 modes, in contrast to the experimental result. A
close inspection of the theoretical results reveals difficulties with the proposed interpretation.
If one attributes the measured dispersive mode as the L = 0 plasmon, then, according to the
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theory, the optical plasmons should have higher energies than the dispersive mode; this trend
is opposite to the one observed in the experiment. If one attributes the measured dispersive
mode as an L 	= 0 plasmon with a high L value, then the trend of the amount of dispersion
as a function of L again puts theory and experiment in opposition. Therefore, while Bose
pointed out an alternative explanation for the experimentally observed nondispersive low-
energy modes, the theoretical qualitative features are in conflict with experiment.

Comparing the results in figures 6 and 7 with results of Longe and Bose [21], a major
difference is that in the latter there is only one branch of collective mode for each angular
momentum index L, while in our results we find many branches for each angular momentum.
This can be understood based on the band structure of the carbon nanotubes with many
occupied and many empty (sub)bands. An agreement with the predictions of the electron gas
model is reached regarding the qualitative behaviour of the modes when the angular momentum
L is increased; the excitation energies increase and the dispersion is reduced. Unlike Bose’s,
our results offer a very plausible qualitative explanation of the experimental results and there is
no need to mention any specific angular momentum to explain the nondispersive character of
the low-energy modes. Since the experiments were performed on a bulk sample, it should
contain carbon nanotubes of various chiralities. The measured dispersive mode could be
contributions from armchair and zigzag tubes, while the measured nondispersive modes could
be due to chiral tubes.

Our results still do not explain the experiment perfectly: the theory predicts many branches
of dispersive π plasmon modes, while experiment observed only one dispersive π plasmon
mode. One possibility is that the broad peak observed experimentally is due to several peaks
merged together. Also, it is not clear which chiral tubes contributed to the low-energy modes at
0.85, 1.45, 2.0, and 2.55 eV. The presence of intertube interaction in the experimental sample,
which is known to shift the energy of plasmons in a model calculation [30], makes a detailed
comparison of energies between the present theory and experiment difficult. Difficulties for the
comparison also arise regarding the angular momentum dependence of the excitations, which
is typical of isolated nanotubes and has no analogue in bundles. We believe that experiments
on isolated carbon nanotubes will make a crucial contribution in our understanding of the
affairs, allowing a direct comparison between theory and experiment. EELS experiment on
isolated SWNTs have already been carried out by Reed and Sarikaya [10]; however, this
was not a momentum-dependent measurement. They have noticed that different single tubes
showed somewhat different results, consistent with our prediction that plasmons in nanotubes
of different chirality behave differently.

5. Conclusion

While obviously more experiments are needed to understand plasmons in carbon nanotubes,
especially momentum-dependent EELS on individual carbon nanotubes, more theoretical
studies are required as well. In the present work, we have only considered the π electrons and
have neglected the σ electrons. Inclusion of the σ electrons will allow us not only to study the
π plasmon modes, but the π +σ plasmon modes as well. Furthermore, while we have used the
nearest-neighbour tight-binding approximation, the recent band structure work of Reich et al
[51] suggests that inclusion up to third-nearest neighbours may be necessary. A known fact is
that the zone folding model does not account properly for the curved geometry of the carbon
nanotube lattice. Calculations of the collective electronic mode dispersion relations using the
improved tight-binding schemes for carbon nanotubes recently proposed by Popov [52] and
Zang [53] are currently in progress. Extensions of the present work to multiwalled carbon
nanotubes and bundles are also needed. It is well accepted that in a metallic single-wall carbon
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nanotube electrons form a Luttinger liquid [54]. Recently, it has been shown that the random
phase approximation approach, as used here, describes the plasmon excitation in the Luttinger
liquid of a metallic carbon nanotube correctly, consistent with the result obtained by other well
established methods for Luttinger liquids [55]. Since single-particle excitations are forbidden
in a Luttinger liquid, the low-energy acoustic plasmon mode in a metallic carbon nanotube
cannot be Landau damped. It is not clear if the Luttinger liquid picture still holds for a carbon
nanotube bundle. Calculations [30] for a carbon nanotube bundle based on a free electron gas
model without invoking the Luttinger liquid picture show that plasmons in a carbon nanotube
bundle are not Landau damped. The lack of Landau damping, whether due to Luttinger liquid
behaviour or not, may offer an explanation for the recent experiment by Lu et al [56], in which
an evanescent wave generated by a totally reflected photon at one boundary is shown to be
able to couple to the surface plasmon at a surface several microns away via a carbon nanotube
bundle layer.

The results of this work clearly demonstrate that free electron gas or hydrodynamic type
models are insufficient to understand some of the important qualitative features of plasmons
in carbon nanotubes. While the chirality is previously known to have an important effect on
the band structure of carbon nanotubes, it has been noted for the first time here that it also
has an important effect on the collective electronic excitations in carbon nanotubes. Chiral
nanotubes with very small Brillouin zones can have dispersionless plasmon modes, offering
an alternative explanation to the dispersionless low energy modes observed experimentally.
The acoustic plasmon modes in metallic carbon nanotubes support the Raman scattering
experimental results.
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Appendix A. Fourier transform

The Coulomb potential is given in cylindrical coordinates by the following expression [57]:

1

|�r − �r ′| = 2

π

∞∑

m=−∞

∫ ∞

0
dk eim(φ−φ ′) cos[k(z − z′)]Im(kρ<)Km(kρ>) (A.1)

where Im and Km are the modified Bessel functions of the first and second kinds, and ρ< (>)

means the smaller (larger) radius between ρ and ρ ′.
To obtain the 1D Fourier transform of the Coulomb interaction we need to perform the

following integral:

1
2

∫ ∞

−∞
eiqz

[
eik(z−z′ ) + e−ik(z−z′ )

]
dz = π

[
e−ikz′

δ(q + k)+ eikz′
δ(q − k)

]

where q is a linear momentum along the nanotube axis. Performing the integration over k in
the expression for the Coulomb potential and taking into account the sign of q , we obtain for
the 1D Fourier transform of the Coulomb potential the expression

∫ ∞

−∞
eiqz

|�r − �r ′| dz = vq( �ρ ′, �ρ)ei|q|z′
, (A.2)
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where

vq( �ρ ′, �ρ) = 2
∞∑

m=−∞
eim(φ−φ ′) Im(|q|ρ<)Km(|q|ρ>). (A.3)

Now if we multiply vq( �ρ ′, �ρ) by eiLφ and perform the φ-integration we obtain
∫ 2π

0
vq( �ρ ′, �ρ)eiLφ dφ = 2

∞∑

m=−∞
e−imφ ′

Im(|q|ρ<)Km(|q|ρ>)
∫ 2π

0
ei(m+L)φ dφ,

using the relations [58]

I−L (z) = IL (z) (A.4)

K−L (z) = KL(z) (A.5)

we get the final expression
∫ 2π

0
vq( �ρ ′, �ρ)eiLφ dφ = 4πF(ρ ′, ρ, q, L)eiLφ ′

, (A.6)

where F(ρ ′, ρ, q, L) = IL (|q|ρ<)KL(|q|ρ>).

Appendix B. Matrix element between tight-binding functions

In this appendix we compute the matrix element 〈h′ �k + �q0|ei(�q0+ �G)·�r |h�k〉 between the tight-
binding wavefunctions (5)

〈h′ �k + �q0|ei(�q0+ �G)·�r |h�k〉 = 1
2

∫ {[
�A

�k+�q0
(�r)+ λh′

�k+�q0
�B

�k+�q0
(�r)

]∗
ei(�q0+ �G)·�r

×
[
�A

�k (�r)+ λh
�k�

B
�k (�r)

]}
d3r.

Since �A,B
�k (�r) are localized functions, we use the approximation

∫
�α

�k+�q0
(�r)∗ei(�q0+ �G)·�r�β

�k (�r) d3r = 0 (B.1)

for all α 	= β . Hence

〈h′ �k + �q0|ei(�q0+ �G)·�r |h�k〉 = 1
2

{∫
�A

�k+�q0
(�r)∗ei(�q0+ �G)·�r�A

�k (�r) d3r

+ λh′∗
�k+�q0

λh
�k

∫
�B

�k+�q0
(�r)∗ei(�q0+ �G)·�r�B

�k (�r) d3r

}
.

The integrals in both terms on the r.h.s. are very similar. Now we give the steps to compute the
first of them:
∫
�A

�k+�q0
(�r)∗ei(�q0+ �G)·�r�A

�k (�r) d3r = 1

N

1

N0

N∑

β,β ′=1

N0∑

γ,γ ′=1

e−i(�k+�q0)· �RA
β′+i�k· �RA

β

× e−i(�k+�q0)·�τγ ′+i�k·�τγ
∫
φ∗

2 pz
(�r − �RA

β ′ − �τγ ′)ei(�q0+ �G)·�r

× φ2 pz(�r − �RA
β − �τγ ) d3r. (B.2)
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Defining �r ′ = �r − �RA
β ′ − �τγ ′ , we have

∫
�A

�k+�q0
(�r)∗ei(�q0+ �G)·�r�A

�k (�r) d3r = 1

N

1

N0

N∑

β,β ′=1

N0∑

γ,γ ′=1

e−i(�k+�q0)· �RA
β′+i�k· �RA

β+i(�q0+ �G)· �RA
β′

× e−i(�k+�q0)·�τγ ′+i�k·�τγ+i(�q0+ �G)·�τγ ′
∫
φ∗

2 pz
(�r ′)ei(�q0+ �G)·�r ′

× φ2 pz(�r ′ + �RA
β ′ − �RA

β + �τγ ′ − �τγ ) d3r ′ (B.3)

and due to the localized character of the atomic orbitals φ2 pz (�r) we get
∫
φ∗

2 pz
(�r ′)ei(�q0+ �G)·�r ′

φ2 pz (�r ′ + �RA
β ′ − �RA

β + �τγ ′ − �τγ ) d3r ′ = A(�q0 + �G)δββ ′δγγ ′

where we have defined

A(�q) =
∫
φ∗

2 pz
(�r ′)ei�q·�r ′

φ2 pz (�r ′) d3r ′. (B.4)

Now we can do exactly the sum over β, β ′, γ ′

∫
�A

�k+�q0
(�r)∗ei(�q0+ �G)·�r�A

�k (�r) d3r = A(�q0 + �G)
N0

N0∑

γ=1

ei �G·�τγ (B.5)

where �G is a vector in the nanotube’s reciprocal lattice ( �G = g �K2). Recalling that �τγ =
(γ − 1) �R − rγ �T where rγ is an integer then

�G · �τγ = 2π(γ − 1)
g

N0
(mp1 − np2)− 2πgrγ

= 2π(γ − 1)
g

N0
M − 2πgrγ . (B.6)

Doing the sum over γ we obtain

1

N0

N0∑

γ=1

ei �G·�τγ = 1

N0

[
e2π igM − 1

e2π i g
N0

M − 1

]
. (B.7)

The expression between square brackets is zero if gM 	= u N0 and is unity if gM = u N0

for any integer u. The physical meaning of this condition is easy to visualize: the vectors �τγ
giving the carbon atom positions in the nanotube’s unit cell belong to the direct lattice of the
underlying graphene layer, but in general a vector �G in the reciprocal lattice of the nanotube
does not belong to the underlying graphene reciprocal lattice. Only those vectors �G which
satisfy the condition gM = u N0 belong to both reciprocal lattices and their contribution in
equation (B.5) is nonzero. This is an intrinsic drawback of the zone folding method, no matter
how many neighbours one includes in the tight-binding calculation or how many atomic orbitals
are considered.

The way to compute the integral in the second term is the same; the only difference in the
result is an additional phase ei �G·��AB coming from the displacement between the lattice of atoms
A and B.

Finally, we obtain the expression for the matrix element as

〈h′ �k + �q0|ei(�q0+ �G)·�r |h�k〉 = 1
2

(
1 + ei �G·��ABλh′∗

�k+�q0
λh

�k
)

A(�q0 + �G)δgM,uN0

where the expression A(�q) = 〈2pz|ei�q·�r |2pz〉 is calculated in the following appendix.
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Appendix C. A(�q) function

We need to compute the matrix element 〈2pz|ei�q·�r |2pz〉. Here �q is a vector in the x–y plane
and the atomic orbitals |2pz〉 are given by the following expression:

〈�r |2pz〉 = φ2 pz(�r) = Z 5/2

4
√

2πa5/2
0

r cos θe−Zr/2a0 , (C.1)

where Z = 3.18 is the effective atomic number and a0 = 0.529 177 Å is the Bohr radius [59].
The matrix element we are interested in is given in cylindrical coordinates �r = ( �ρ, z) by the
integral

〈2pz|ei�q ·�r |2pz〉 = C2
∫

d2ρ ei�q· �ρ
∫ ∞

−∞
dz z2e−Z

√
ρ2+z2/a0

where we have used the relation z = r cos θ and C = Z5/2

4
√

2πa5/2
0

. In the z integral, since the

integrand is an even function of z, we can change the lower limit of the integral to zero and
multiply the result by two. With the variable change u = √

ρ2 + z2 we transform our integral
to ∫ ∞

−∞
dz z2e−Z

√
ρ2+z2/a0 = 2

∫ ∞

ρ

du u
√

u2 − ρ2e−Zu/a0 .

Using the table of integrals [58] we get∫ ∞

−∞
dz z2e−Z

√
ρ2+z2/a0 = 4√

π

a0

Z
�(3/2)ρ2 K2(Zρ/a0) (C.2)

where K2 is the modified Bessel function.
Now taking an arbitrary vector �q of length q and forming an angle φ′ with the x axis, we

get the scalar product �q · �ρ = qρ cos(φ − φ′). So far we have

〈2pz|ei�q·�r |2pz〉 = C2 4√
π

a0

Z
�(3/2)

∫ ∞

0
dρ ρ3 K2(Zρ/a0)

∫ 2π

0
dφ eiqρ cos(φ−φ ′). (C.3)

To evaluate the integral on the angular variable, we start by expanding the exponential function

∫ 2π

0
dφ eiqρ cos(φ−φ ′) =

∞∑

t=0

(iqρ)t

t !
∫ 2π

0
dφ cost(φ − φ′) (C.4)

to obtain the result [58]∫ 2π

0
dφ eiqρ cos(φ−φ ′) = 2π

∞∑

m=0

(−1)m
(qρ)2m

(2m)!!2 (C.5)

where (2m)!! = 2 · 4 · · · · · 2m = 2mm! and finally arrive at the expression
∫ 2π

0
dφ eiqρ cos(φ−φ ′) = 2π

∞∑

m=0

(−1)m
(qρ)2m

22mm!2 = 2π J0(qρ). (C.6)

From the steps above and using �(3/2) = √
π/2, the matrix element becomes

〈2pz|ei�q ·�r |2pz〉 = C24π
a0

Z

∫ ∞

0
dρ ρ3 K2(Zρ/a0)J0(qρ),

where [58] ∫ ∞

0
dρ ρ3 K2(Zρ/a0)J0(qρ) = 8(Z/a0)

2

(q2 + (Z/a0)2)3
. (C.7)

Putting all together we arrive at our final expression

A(�q) = 〈2pz|e−i�q ·�r |2pz〉 =
(

1 + a2
0

Z 2
q2

)−3

. (C.8)
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